Application of machine learning methods to spatial interpolation of environmental variables

نویسندگان

  • Jin Li
  • Andrew D. Heap
  • Anna Potter
  • James Daniell
چکیده

Machine learning methods, like random forest (RF), have shown their superior performance in various disciplines, but have not been previously applied to the spatial interpolation of environmental variables. In this study, we compared the performance of 23 methods, including RF, support vector machine (SVM), ordinary kriging (OK), inverse distance squared (IDS), and their combinations (i.e., RFOK, RFIDS, SVMOK and SVMIDS), using mud content samples in the southwest Australian margin. We also tested the sensitivity of the combined methods to input variables and the accuracy of averaging predictions of the most accurate methods. The accuracy of the methods was assessed using a 10-fold cross-validation. The spatial patterns of the predictions of the most accurate methods were also visually examined for their validity. This study confirmed the effectiveness of RF, in particular its combination with OK or IDS, and also confirmed the sensitivity of RF and its combined methods to the input variables. Averaging the predictions of the most accurate methods showed no significant improvement in the predictive accuracy. Visual examination proved to be an essential step in assessing the spatial predictions. This study has opened an alternative source of methods for spatial interpolation of environmental properties. Crown Copyright 2011 Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluating machine learning methods and satellite images to estimate combined climatic indices

The reflections recorded on satellite images have been affected by various environmental factors. In these images, some of these factors are combined with other environmental factors that cannot be distinguished. Therefore, it seems wise to model these environmental phenomena in the form of hybrid indicators. In this regard, satellite imagery and machine learning methods can play a unique role ...

متن کامل

Modeling spatial distribution of Tehran air pollutants using geostatistical methods incorporate uncertainty maps

The estimation of pollution fields, especially in densely populated areas, is an important application in the field of environmental science due to the significant effects of air pollution on public health. In this paper, we investigate the spatial distribution of three air pollutants in Tehran’s atmosphere: carbon monoxide (CO), nitrogen dioxide (NO2), and atmospheric particulate matters less ...

متن کامل

Modeling spatial distribution of Tehran air pollutants using geostatistical methods incorporate uncertainty maps

The estimation of pollution fields, especially in densely populated areas, is an important application in the field of environmental science due to the significant effects of air pollution on public health. In this paper, we investigate the spatial distribution of three air pollutants in Tehran’s atmosphere: carbon monoxide (CO), nitrogen dioxide (NO2), and atmospheric particulate matters less ...

متن کامل

Application of multivariate statistics and geostatistical techniques to identify the spatial variability of heavy metals in groundwater resources

The performance of geostatistical and spatial interpolation techniques for estimation of spatial variability of heavy metals and water quality mapping of groundwater resources in Ramiyan district (Golestan province- Iran) were investigated. 24 spring/well water samples were collected and the concentration of heavy metals (Ni, Co, Pb, Cd and Cu) was determined using Differential Pulse Polarograp...

متن کامل

The Effect of Station Density and Regional Division on Spatial Distribution of Daily Rainfall

Rainfall is one of the most important climatic variables in the hydrology cycle. In flood estimation as well as environmental pollution studies in medium to large watersheds not only mus temporal pattern of rainfall t be known, but also the knowledge of its spatial distribution is required. Estimation of daily rainfall distribution without comparison and selection of suitable methods may lead...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental Modelling and Software

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2011